

# LightMachinery Spectrometers Detailed Technical Specifications



Designed for measuring hyperfine spectra and subtle spectral shifts, the HyperFine spectrometer from LightMachinery is a compact spectrometer capable of **picometer resolution**.

These spectrometers are ideal for measuring fine features in plasmas, pulsed laser characterization and for measuring the small spectral shifts from Brillouin or Raman scattering. Simple PC based software allows the user to review spectra in real time and save or export for more analysis. LabView drivers and C# named pipe commands enable the HF series to be integrated into automated experimental setups.

# **Features**

- FAST, No moving parts (single shot laser spectrum analysis)
- Picometer resolution
- Fiber optic input

# **Benefits**

- Fast acquisition (>10Hz)
- Compact
- Can resolve hyperfine spectra below 1 picometer

# Light source characterization

- Lasers of all types
- Single shot pulsed laser spectrum
- Super luminescent diodes
- Gas discharge lamps, etc

# Spectroscopy

- Plasma spectroscopy
- High-precision gas spectroscopy
- Femtosecond comb fingerprinting spectroscopy
- Spectral-domain optical coherence tomography
- Solar spectroscopy
- Brillouin spectroscopy

   various life science and bio applications

- Quick data acquisition and export
- Simple USB interface
- LabView Drivers C# named pipe commands
- Ultra-reliable
- Large range-over-resolution ratio (>10000)
- LightMachinery's legendary customer support

## Passive components characterization

- Notch filters
- Etalons
- Fiber Bragg gratings, etc
- Astronomical spectroscopy
- Raman and ultra-low frequency Raman
- Undergraduate physics and chemistry laboratories o Zeeman splitting
- o Hyperfine magnetic structure of elements
- o Hydrogen structure
- o Doppler shift of Fraunhofer lines due to sun rotation

#### Hyperfine HF Series for Weak Sources

### Adjustable range HF models

|                                                  | HF-8989-1                                                    | HF-8989-2{e}             | HF-8989-3                               | HF-8995-1           | HF-8991-3           | HF-8995-2           | HF-8995-3    |
|--------------------------------------------------|--------------------------------------------------------------|--------------------------|-----------------------------------------|---------------------|---------------------|---------------------|--------------|
| Spectral region                                  | Vis NIR                                                      |                          |                                         |                     |                     | (Plasma)            |              |
| Spectral                                         | 1.3 pm                                                       | 1.6 {1.4} pm             | 1. 6 pm                                 | 2.0 pm              | 2.0 pm              | 2.5 pm              | 0.9 pm       |
| resolution***                                    | (0.05/cm)                                                    | (0.05/cm)                | (0.04/cm)                               | (0.03/cm)           | (0.02/cm)           | (0.02/cm)           | (0.01/cm)    |
| Resolving power                                  | <u>(0.05/cm)</u><br>3.6*10⁵                                  | 3.4{4.2}*10 <sup>5</sup> | <u>(0.04/cm)</u><br>4.1*10 <sup>5</sup> | 3.8*10 <sup>5</sup> | 4.4*10 <sup>5</sup> | 4.0*10 <sup>5</sup> | ~1 million   |
| Total spectral range                             | 425-500                                                      | 500-600 nm               | 600-700                                 | 700-800             | 800-950 pm          | 950-1100            | 775-900 nm   |
| rotal spectral range                             | nm                                                           | {520-640 nm}             | nm                                      | nm                  |                     | nm                  | 770 000 1111 |
| Simultaneous range                               | 13 nm                                                        | 16 nm<br>{14 nm}         | 16 nm                                   | 20 nm               | 20 nm               | 25 nm               | 9 nm         |
| Sim.                                             |                                                              |                          |                                         | 10 000              |                     |                     |              |
| range/resolution                                 |                                                              |                          |                                         |                     |                     |                     |              |
| Motorized grating?                               |                                                              | Yes                      |                                         |                     |                     |                     |              |
| Absolute accuracy                                | <± 20 pm                                                     |                          |                                         |                     |                     |                     |              |
| Acquisition speed                                | >10 Hz                                                       |                          |                                         |                     |                     |                     |              |
| Fiber input                                      | SMF or MMF (105 um, 0.22 NA), FC/PC (specified pre-purchase) |                          |                                         |                     |                     |                     |              |
| Slit width                                       | 5 or 10 um                                                   |                          |                                         |                     |                     | 5 um                |              |
| F# / NA                                          | ~f/4.5                                                       |                          |                                         |                     |                     | ~f/6                |              |
| Typical throughput                               | >25 %                                                        |                          |                                         |                     |                     | ~10 %               |              |
| Calib. source                                    |                                                              |                          | Yes, Hyp                                | perCal or user-     | provided            |                     |              |
| needed?                                          |                                                              |                          |                                         |                     |                     |                     |              |
| Typical FSR                                      |                                                              | <1 % <1.5 %              |                                         |                     |                     |                     |              |
| crosstalk                                        |                                                              |                          |                                         |                     |                     |                     |              |
| VIPA FSR                                         | 75 GHz                                                       | 75 GHz<br>{60 GHz}       | 60 GHz                                  | 60 GHz              | 50 GHz              | 50 GHz              | 30 GHz       |
| Default sensor                                   | sCMOS                                                        |                          |                                         |                     |                     |                     |              |
| Sensor dynamic<br>range                          | ~9 *10 <sup>3</sup>                                          |                          |                                         |                     |                     |                     |              |
| Sensor QE                                        | ~65%                                                         | ~70%                     | ~70%                                    | ~55%                | ~30%                | <10%                | ~40%         |
| Approx. min. input<br>power (105 um, 0.22<br>NA) | ~5 pW pse                                                    | ~5 pW pse                | ~5 pW pse                               | ~6 pW pse           | ~10 pW pse          | ~0.1 nW<br>pse      | ~8 pW pse    |
| Approx. min. input<br>power (SMF)                | ~0.05 pW<br>pse                                              | ~0.05 pW pse             | ~0.05 pW<br>pse                         | ~0.06 pW<br>pse     | ~0.1 pW<br>pse      | ~1 pW pse           | ~0.08 pW pse |
| Trigger                                          | Yes                                                          |                          |                                         |                     |                     |                     |              |
| Dimensions                                       | A                                                            |                          |                                         |                     | D                   |                     |              |

#### Notes and upgrades:

- The following is included with all standard models:
  - o Spectrometer with integrated sensor and accessories
  - o SpectraLoK software for real-time acquisition and more
  - o Computer and accessories
- Upgrades for the Hyperfine HF Series (available for certain models)
  - o \*\*\*UHR upgrade: 1.8X increase in resolving power
  - o ULC upgrade): 5 X decrease in crosstalk, available for certain models
  - o Camera upgrade: cooled CCD, lower noise sCMOS, ICCD, or other user-selected camera
  - o High-speed upgrade: up to 1000 Hz
  - o HyperCal calibration source
  - o Other beta-stage upgrades are available upon request (see extended datasheet for more details)
  - All models are customizable; don't hesitate to ask us!

### Hyperfine HF Series for Weak Sources

## Fixed range HF models

| HF-7888-LLL<br>(beta)                                                    | HF-8999-PK-LLL<br>*<br>(Brillouin)                                                                                                                                                                                                                                                                                                                                                                               | HF-8888-UV<br>(LIBS, beta)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HF-9332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HF-9353<br>(beta)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| UV-Vis-NIR                                                               | UV-Vis-NIR                                                                                                                                                                                                                                                                                                                                                                                                       | UV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Vis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 0.2 - 0.8 pm                                                             | 0.3 – 1 pm                                                                                                                                                                                                                                                                                                                                                                                                       | 30 pm<br>(0.8/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25 pm<br>(0.9/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40 pm<br>(0.5/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| ~1 million                                                               | ~1 million                                                                                                                                                                                                                                                                                                                                                                                                       | <b>~</b> 1*10⁴                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ~2*104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~2*10⁴                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Fixed 2 – 8 nm<br>selected within<br>350-1080 nm                         | 1-2 nm centered<br>on 355, 457, 532,<br>660, or 780 nm                                                                                                                                                                                                                                                                                                                                                           | Fixed 60 nm<br>selected within<br>200 - 400 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 450 – 700 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 750-1050 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| 2 – 8 nm                                                                 | 1-2 nm                                                                                                                                                                                                                                                                                                                                                                                                           | 60 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 250 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 300 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| ~10 000                                                                  | ~1000 - 6000                                                                                                                                                                                                                                                                                                                                                                                                     | ~2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~7500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                  | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| <±10 pm                                                                  | <±10 pm                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| ·                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                  | >10 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| SMF or MMF (105<br>um, 0.22 NA),<br>FC/PC<br>(specified<br>pre-purchase) | SMF                                                                                                                                                                                                                                                                                                                                                                                                              | MMF (105 um, 0.22 NA), SMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 5 or 10 um                                                               | No slit                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 um                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| ~f/                                                                      | 4.5                                                                                                                                                                                                                                                                                                                                                                                                              | ~f/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ~f/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ~f/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                  | >25 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                  | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| ~0.5 % <0.2 %                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                  | <1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 15 or 30 GHz                                                             | 15, 30, or 50 GHz                                                                                                                                                                                                                                                                                                                                                                                                | 2000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 660 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| sCMOS                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                  | CMOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| ~9 *10 <sup>3</sup>                                                      | ~2 *104                                                                                                                                                                                                                                                                                                                                                                                                          | ~3 *104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ~4 *10 <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~4 *10 <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| <1% - 70%                                                                | ~45 – 80%                                                                                                                                                                                                                                                                                                                                                                                                        | ~15-60 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~65 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ~13%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 5 pW - 1 nW<br>pse                                                       | NA                                                                                                                                                                                                                                                                                                                                                                                                               | ~10 pW pse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ~1 pW pse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ~5 pW pse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 0.05 - 10 pW ~5 pW pse<br>pse                                            |                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Yes                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| E                                                                        | D                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                                                          | (beta)<br>UV-Vis-NIR<br>0.2 - 0.8  pm<br>$\sim 1 \text{ million}$<br>Fixed 2 - 8 nm<br>selected within<br>350-1080  nm<br>2 - 8  nm<br>$\sim 10 000$<br>$<\pm 10 \text{ pm}$<br>SMF or MMF (105<br>um, 0.22 NA),<br>FC/PC<br>(specified<br>pre-purchase)<br>5  or 10 um<br>$\sim 10 \text{ or 30 GHz}$<br>$\sim 0.5 \%$<br>15  or 30 GHz<br>$\sim 9 *10^3$<br><1% - 70%<br>5  pW - 1  nW<br>pse<br>0.05 - 10  pW | (beta)         *           UV-Vis-NIR         UV-Vis-NIR $0.2 - 0.8 \text{ pm}$ $0.3 - 1 \text{ pm}$ $\sim 1 \text{ million}$ $\sim 1 \text{ million}$ $\sim 1 \text{ million}$ $\sim 1 \text{ million}$ Fixed 2 - 8 nm $1-2 \text{ nm}$ centered           selected within $355, 457, 532, 660, or 780 \text{ nm}$ $2 - 8 \text{ nm}$ $1-2 \text{ nm}$ $\sim 10000$ $\sim 1000 - 6000$ $\sim 10 000$ $\sim 1000 - 6000$ $\sim 100 000$ $\sim 1000 - 6000$ $\sim 0.2 \text{ NA}$ $\sim 100 \text{ MB}$ $\sim 0.5 \text{ N}$ $< 0.2 \text{ N}$ $\sim 0.5 \text{ M}$ $< 0.2 \text{ M}$ < | (beta)         *         (LIBS, beta)           UV-Vis-NIR         UV-Vis-NIR         UV           0.2 - 0.8 pm         0.3 - 1 pm         30 pm $\sim 1$ million $2 - 8$ nm $1 - 2$ nm $800 - 400$ nm $200 - 400$ nm $2 - 8$ nm $1 - 2$ nm $60$ nm $200 - 400$ nm $\sim 10$ 000 $\sim 1000 - 6000$ $\sim 2000$ $\sim 2000$ $\sim \pm 10$ pm $< \pm 10$ pm $\sim 10$ PM $\sim 10$ PM $\sim F/P < D^{2}$ NA), FC/PC $\sim 15$ Millio | $\begin{array}{c c c c c c c c } (beta) & * & (LIBS, beta) \\ \hline (Brillouin) & UV-Vis-NIR & UV & Vis \\ \hline UV-Vis-NIR & UV & Vis \\ \hline 0.2 - 0.8 \ pm & 0.3 - 1 \ pm & 30 \ pm & 25 \ pm \\ \hline 0.3 - 1 \ pm & 0.3 \ pm & 30 \ pm & 25 \ pm \\ \hline (0.8/cm) & (0.9/cm) & (0.9/cm) \\ \hline (0.9/cm) & (0.9/cm) & (0.9/cm) & (0.9/cm) \\ \hline (0.8/cm) & (0.9/cm) & (0.9/cm) & (0.9/cm) \\ \hline (0.8/cm) & (0.9/cm) & (0.9/cm) & (0.9/cm) & (0.9/cm) \\ \hline (0.8/cm) & 0.35, 457, 532, & selected within \\ selected within & on 355, 457, 532, & selected within \\ selected within & on 355, 457, 532, & selected within \\ 350-1080 \ nm & 660, or 780 \ nm & 60 \ nm & 250 \ nm & 250 \ nm & 200 \ -400 \ nm & 250 \ nm & 200 \ -400 \ nm & 250 \ nm & 200 \ -400 \ nm & 250 \ nm & 200 \ -400 \ nm & 200 \ -400 \ nm & 250 \ nm & 200 \ -400 \ nm & 250 \ nm & 200 \ -400 \ nm & 250 \ nm & 200 \ -400 \ nm & 200 \ -400 \ nm & 250 \ nm & 200 \ -400 \ nm & 250 \ nm & 200 \ -400 \ nm & 250 \ nm & 200 \ -400 \ nm & 250 \ nm & 200 \ -400 \ nm & 250 \ nm & 200 \ -400 \ nm & 250 \ nm & 200 \ nm & 250 \ nm & 200 \ nm & 250 \ nm & 250 \ nm & 250 \ nm & 250 \ nm & 200 \ nm & 250 \ nm $ |  |  |

#### Notes and upgrades:

- The following is included with all standard models:
  - o Spectrometer with integrated sensor and accessories
  - o SpectraLoK software for real-time acquisition and more
  - o Computer and accessories
- Upgrades for the Hyperfine HF Series (available for certain models)
  - o \*\*\*UHR upgrade: 1.8X increase in resolving power
  - o ULC upgrade): 5 X decrease in crosstalk, available for certain models
  - o Camera upgrade: cooled CCD, lower noise sCMOS, ICCD, or other user-selected camera
  - o High-speed upgrade: up to 1000 Hz
  - o HyperCal calibration source
  - o Other beta-stage upgrades are available upon request (see extended datasheet for more details)
  - All models are customizable; don't hesitate to ask us!

#### Hyperfine HN Series for Bright Sources

## Adjustable range HN models

|                                                  | HN-8989-1                                                    | HN-8989-2{<br>e}                 | HN-8989-3            | HN-8995-1           | HN-8991-3           | HN-8995-2           | HN-8995-2-<br>0.9   |
|--------------------------------------------------|--------------------------------------------------------------|----------------------------------|----------------------|---------------------|---------------------|---------------------|---------------------|
| Spectral region                                  | Vis                                                          |                                  |                      | NIR                 |                     |                     | 0.0                 |
| Spectral<br>resolution***                        | 1.3 pm<br>(0.05/cm)                                          | 1.6 {1.4}<br>pm<br>(0.05/cm)     | 1. 6 pm<br>(0.04/cm) | 2.0 pm<br>(0.03/cm) | 2.0 pm<br>(0.02/cm) | 2.5 pm<br>(0.02/cm) | 0.9 pm<br>(0.01/cm) |
| Resolving power                                  | 3.6*10 <sup>₅</sup>                                          | 3.4{4.2}*10<br>5                 | 4.1*10 <sup>5</sup>  | 3.8*10 <sup>₅</sup> | 4.4*10 <sup>5</sup> | 4.0*10 <sup>₅</sup> | ~1 million          |
| Total spectral range                             | 425-500<br>nm                                                | 500-600<br>nm<br>{520-640<br>nm} | 600-700<br>nm        | 700-800<br>nm       | 800-950<br>pm       | 950-1100<br>nm      | 1030-1090<br>nm     |
| Simultaneous range                               | 13 nm                                                        | 16 nm<br>{14 nm}                 | 16 nm                | 20 nm               | 20 nm               | 25 nm               | 9 nm                |
| Sim.                                             | 10 000                                                       |                                  |                      |                     |                     |                     | •                   |
| range/resolution                                 |                                                              |                                  |                      |                     |                     |                     |                     |
| Motorized grating?                               | Yes                                                          |                                  |                      |                     |                     |                     |                     |
| Absolute accuracy                                |                                                              | <± 20 pm                         |                      |                     |                     |                     |                     |
| Acquisition speed                                | >10 Hz                                                       |                                  |                      |                     |                     |                     |                     |
| Fiber input                                      | SMF or MMF (400 um, 0.39 NA), FC/PC (specified pre-purchase) |                                  |                      |                     |                     |                     |                     |
| Slit width                                       | 5 or 10 um                                                   |                                  |                      |                     |                     | 5 um                |                     |
| Approx. aperture                                 | ~f/4.5                                                       |                                  |                      |                     |                     | ~f/6                |                     |
| Typical throughput                               |                                                              |                                  |                      | ~0.2 %              |                     |                     |                     |
| Calib. source<br>needed?                         | Yes, HyperCal or user-provided                               |                                  |                      |                     |                     |                     |                     |
| Typical FSR<br>crosstalk**                       | <0.7 %                                                       |                                  |                      |                     |                     | <1 %                |                     |
| Etalon FSR                                       | 75 GHz                                                       | 75 GHz<br>{60 GHz}               | 60 GHz               | 60 GHz              | 50 GHz              | 50 GHz              | 30 GHz              |
| Default sensor                                   | CMOS                                                         |                                  |                      | sCMOS               |                     |                     |                     |
| Sensor dynamic<br>range                          | ~4 *10 <sup>3</sup>                                          |                                  |                      | ~9 *10 <sup>3</sup> |                     |                     |                     |
| Sensor QE                                        | ~60                                                          | ~65                              | ~55                  | ~55%                | ~30%                | <10%                | ~40%                |
| Approx. min. input<br>power (200 um, 0.22<br>NA) | 0.5 nw pse                                                   | 0.5 nw pse                       | 0.6 nw pse           | 0.6 nw pse          | ~1 nW pse           | ~5 nW pse           | ~0.8 nW<br>pse      |
| Approx. min. input<br>power (SMF)                | 5 pw pse                                                     | 5 pw pse                         | 6 pw pse             | 6 pw pse            | ~10 pW<br>pse       | ∼50 pW<br>pse       | ~8 pW pse           |
| Trigger                                          | Yes                                                          |                                  |                      |                     |                     |                     |                     |
| Dimensions                                       | A                                                            |                                  |                      |                     |                     |                     |                     |

#### Notes and upgrades:

- The following is included with all standard models:
  - o Spectrometer with integrated sensor and accessories
  - o SpectraLoK software for real-time acquisition and more
  - o Computer and accessories
- Upgrades for the Hyperfine HN Series (available for certain models)
  - o \*\*\*UHR upgrade: 1.8X increase in resolving power
  - o ULC upgrade (beta): 5 X decrease in crosstalk, available for certain models
  - o Camera upgrade: user-selected camera
  - o High-speed upgrade: up to 1000 Hz
  - o HyperCal calibration source
  - o Other beta-stage upgrades are available upon request (see extended datasheet for more details)
- All models are customizable; don't hesitate to ask us!

### **Hyperfine HN Series for Bright Sources**

## Fixed range HN models

|                                                 | HN-7888-LLL<br>(beta)                                                  | HN-8888-UV<br>(beta)                              | HN-9332             | HN-9353             | HN-9352<br>(beta)             | HN-9354             |
|-------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------|---------------------|---------------------|-------------------------------|---------------------|
| Spectral region                                 | UV-Vis-NIR                                                             | UV                                                | Vis                 | NIR                 | VIS-NIR                       | NIR                 |
| Spectral resolution***                          | 0.2 - 0.8 pm                                                           | 30 pm<br>(0.8/cm)                                 | 25 pm<br>(0.45/cm)  | 40 pm<br>(0.3/cm)   | 15 pm                         | 10 pm               |
| Resolving power                                 | ~1 million                                                             | ~1*104                                            | ~4*104              | ~4*104              | ~5*10 <sup>2</sup>            | ~1*10 <sup>₅</sup>  |
| Total spectral<br>range                         | Fixed 2 – 8<br>nm selected<br>within<br>350-1080 nm                    | Fixed 60 nm<br>selected<br>within 200 -<br>400 nm | 450 – 700 nm        | 750-1050 nm         | 530-534 nm<br>1060-1068<br>nm | 1010-1080<br>nm     |
| Simultaneous                                    | 2 – 8 nm                                                               | 60 nm                                             | 250 nm              | 300 nm              | 4 & 8 nm                      | 70 nm               |
| range                                           |                                                                        |                                                   |                     |                     |                               |                     |
| Sim.<br>range/resolution                        | ~10 000                                                                | ~2000                                             | ~10000              | ~12000              | ~800                          | ~7000               |
| Motorized grating?                              |                                                                        |                                                   |                     | l<br>lo             |                               |                     |
| Absolute accuracy                               | <±10 pm                                                                |                                                   |                     | <± 50 pm            |                               |                     |
| Acquisition speed                               |                                                                        |                                                   | >10                 | ) Hz                |                               |                     |
| Fiber input                                     | SMF or MMF<br>(50um, 0.22<br>NA), FC/PC<br>(specified<br>pre-purchase) | SMF, FC/PC                                        |                     |                     |                               |                     |
| Slit width                                      | 5 or 10 um                                                             | No slit                                           |                     |                     |                               |                     |
| Approx. aperture                                | ~f/4.5                                                                 |                                                   |                     | ~f/4                |                               |                     |
| Typical throughput                              |                                                                        |                                                   | ~0.                 | 2 %                 |                               |                     |
| Calib. source<br>needed?                        |                                                                        | No                                                |                     |                     |                               |                     |
| Typical FSR<br>crosstalk                        | ~0.3 %                                                                 | <1 % <0.5 %                                       |                     |                     |                               |                     |
| Etalon FSR                                      | 15 or 30 GHz                                                           | 2000 GHz                                          | 1000 GHz            | 660 GHz             | 150 GHz                       | 150 GHz             |
| Default sensor                                  | sCMOS                                                                  | CMOS                                              |                     |                     |                               |                     |
| Sensor dynamic<br>range                         | ~9 *10 <sup>3</sup>                                                    | ~3 *104                                           | ~4 *10 <sup>3</sup> | ~4 *10 <sup>3</sup> | ~4 *10 <sup>3</sup>           | ~6 *10 <sup>3</sup> |
| Sensor QE                                       | <1% - 70%                                                              | ~15-60 %                                          | ~65 %               | ~13%                | <5% - 65%                     | <5%                 |
| Approx. min. input*<br>power (200um,<br>0.22NA) | 0.5 - 100 nW<br>pse                                                    | NA                                                |                     |                     |                               |                     |
| Approx. min. input*<br>power (SMF)              | 5 pW - 1<br>nW pse                                                     | ~10 pW pse                                        | ~1 pW pse           | ~5 pW pse           | ~1 - 20 pW<br>pse             | ~20 pW pse          |
| Trigger                                         |                                                                        | Yes                                               |                     |                     |                               |                     |
| Form factors                                    | E                                                                      | A C B                                             |                     |                     |                               |                     |

#### Notes and upgrades:

•

- The following is included with all standard models:
  - o Spectrometer with integrated sensor and accessories
  - o SpectraLoK software for real-time acquisition and more
  - o Computer and accessories
  - Upgrades for the Hyperfine HN Series (available for certain models)
    - o \*\*\*UHR upgrade: 1.8X increase in resolving power
    - o ULC upgrade): 5 X decrease in crosstalk, available for certain models
    - o Camera upgrade: user-selected camera
    - o High-speed upgrade: up to 1000 Hz
    - o HyperCal calibration source
    - o Other beta-stage upgrades are available upon request (see extended datasheet for more details)
- All models are customizable; don't hesitate to ask us!

# Descriptions and definitions:

| Descriptions and                  |                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Spectral region                   | Rough indicator of the spectral range: divided as UV (<400 nm), Vis (400-700 nm), and NIR (>700 nm)                                                                                                                                                                                                                 |
| Spectral resolution               | Resolution refers to how close two narrow features can be while remaining distinguishable. It is specified here in terms of the FWHM of an instrument-limited feature. <b>Specified in the middle of the total spectral range.</b> The minimum value is specified, typically ~10-20% better resolution is achieved. |
| Resolving power                   | Defined as the ratio wavelength / FWHM resolution.                                                                                                                                                                                                                                                                  |
| Total spectral range              | Spectral range over which the instrument can be tuned in the case of rotatable grating                                                                                                                                                                                                                              |
|                                   | spectrometers. Spectral range covered by fixed grating spectrometers.                                                                                                                                                                                                                                               |
| Simultaneous range                | Spectral range covered in a single measurement (single shot). Corresponds essential to the total spectral range in the case of fixed grating spectrometers.                                                                                                                                                         |
| Sim.                              | Refers to the number of distinct spectral elements measured in a single shot. Literally the ratio of                                                                                                                                                                                                                |
| range/resolution                  | the simultaneous range and the spectral resolution.                                                                                                                                                                                                                                                                 |
| Motorized grating?                | Indicates whether the grating angle is fixed or adjustable.                                                                                                                                                                                                                                                         |
| Absolute accuracy                 | Characterizes how close the measured position of a given feature is in comparison to its "true"                                                                                                                                                                                                                     |
|                                   | wavelength. Specified as the maximum wavelength error that can be observed at any time in the                                                                                                                                                                                                                       |
|                                   | case of fixed grating spectrometers and immediately following calibration in the case of rotatable                                                                                                                                                                                                                  |
|                                   | grating spectrometers.                                                                                                                                                                                                                                                                                              |
| Acquisition speed                 | Number of spectrometers.                                                                                                                                                                                                                                                                                            |
| Fiber input                       | Describes the required fiber input: the core type can be single mode fiber (SMF) and/or multimode                                                                                                                                                                                                                   |
| i iber input                      | fiber (MMF, typically on the order of 0.22 NA 105um); the connector type can be FC/PC or SMA.<br>Free beam coupling can be accommodated in certain spectrometers, please contact us for details.                                                                                                                    |
| Slit width                        | The HF spectrometers combine a VIPA and a diffraction grating in a cross-dispersion configuration.                                                                                                                                                                                                                  |
| Sht width                         | The grating dispersion direction requires a slit; this is the slit width specified. Note that physically,                                                                                                                                                                                                           |
|                                   | the slit height is several mm; however the "used slit height" is simply equal to the core diameter of                                                                                                                                                                                                               |
|                                   | the fiber in the case of etalon-based spectrometers (HNs) and a fraction of the core diameter of the                                                                                                                                                                                                                |
|                                   | fiber in the case of VIPA-based spectrometers (HFs).                                                                                                                                                                                                                                                                |
| Approx. aperture                  | Approximate F-number of the spectrometer, namely the ratio of the collimator's focal length /                                                                                                                                                                                                                       |
|                                   | collimator's (and subsequent optics') clear aperture.                                                                                                                                                                                                                                                               |
| Typical throughput                | Rough estimate of the fraction of input photons reaching the sensor (specified for a SMF input; for a MMF input, the throughput is lower and varies with the NA and the core size).                                                                                                                                 |
| Calib. source                     | Specifies whether an external calibration source is needed or not. Essentially, fixed grating                                                                                                                                                                                                                       |
| needed?                           | spectrometers do not require a calibration source while rotatable grating spectrometers do. The external calibration source must be provided by the user or a HyperCal can be purchased.                                                                                                                            |
| Typical FSR                       | Amplitude level of the small artefacts associated with the cross-dispersion configuration (for                                                                                                                                                                                                                      |
| crosstalk                         | reference only, approximate level in the middle of the range). The crosstalk of strong features                                                                                                                                                                                                                     |
|                                   | manifests as small "echoes" located precisely at +/- 1 VIPA or etalon FSR (free spectral range).                                                                                                                                                                                                                    |
| VIPA or etalon FSR                | Free spectral range of the etalon or VIPA.                                                                                                                                                                                                                                                                          |
| Default sensor                    | Type of camera included with the base model. Note that a megapixel 2D sensor array is required due to the 2D dispersion configuration.                                                                                                                                                                              |
| Sensor dynamic range              | Dynamic range of the default sensor, defined as the ratio of the well depth / read out noise.                                                                                                                                                                                                                       |
| Sensor QE                         | Quantum efficiency of the default sensor ( <b>specified approximately in the middle of the range of interest</b> ).                                                                                                                                                                                                 |
| Approx. min. input<br>power (MMF) | Rough estimate of the min power required per spectral element ( <b>specified approximately in the middle of the range of interest</b> ) for the signal to be well above background (i.e. for the                                                                                                                    |
|                                   | signal-to-background ratio to reach on the order of >10) with an exposure of 1 second. Note that                                                                                                                                                                                                                    |
|                                   | in the tables, "pW pse" stands for "pW per spectral element"                                                                                                                                                                                                                                                        |
| Approx. min. input                | Same as above, but considering a SMF.                                                                                                                                                                                                                                                                               |
| power (SMF)                       |                                                                                                                                                                                                                                                                                                                     |
| Trigger                           | Specifies whether the default sensor supports external triggering.                                                                                                                                                                                                                                                  |
| Form factors                      | Standard sizes and weights:                                                                                                                                                                                                                                                                                         |
|                                   | A dimensions: 250 x 600 x 150mm, weight; 20Kg                                                                                                                                                                                                                                                                       |
|                                   | B dimensions: 200 x 200 x 90mm, weight; 2Kg                                                                                                                                                                                                                                                                         |
|                                   | C dimensions: 160 x 200 x 100mm, weight; 1.5Kg                                                                                                                                                                                                                                                                      |
|                                   | D dimensions: 700 x 150 x 400mm, weight; 28Kg                                                                                                                                                                                                                                                                       |
|                                   | D dimensions. 700 x 100 x 400mm, weight, 20kg                                                                                                                                                                                                                                                                       |

# **Extended Support and Calibration Services (eSCS)**

All LightMachinery spectrometers are supplied fully calibrated. Support and calibration services are provided for your first year of ownership at no additional charge.

Our extended Support and Calibration Services (eSCS) package includes ongoing support directly from LightMachinery's spectrometer technical support team. Our eSCS package includes the following:

- Remote assistance for spectrometer use, alignment and calibration
- Vendor certified calibration
- Repairs at LightMachinery facility
- Unlimited SpectraloK updates, as applicable
- Response provided within one-business day
- Support provided during normal LightMachinery business hours.
- Discounted pricing for replacement parts/software as required
- Discounted rate for on-site service

The program excludes:

- Custom software development
- Optical and software integration support
- Shipping costs

#### \* eSCS Terms:

Pricing is per serial number and covers all equipment shipped as part of the system with that serial number. Pricing may increase on a year-to-year basis. Shipping costs for services that require a return to our facility are not included. The extended service plan comes into effect at the end of the warranty period. If the extended service plan coverage is allowed to expire, LightMachinery reserves the right to recertify the equipment at the customer's expense prior to re-activating extended service coverage.

LightMachinery Spectrometers are made in Canada and qualify for duty-free treatment as Canadian originating goods under applicable free trade agreements.

The harmonized code for spectrometers is 9027.30

Typical shipping dimensions are 48x48x24 inches, 350lbs.